A Maximum Entropy Approach to Assess Debonding in Honeycomb aluminum Plates
نویسندگان
چکیده
Honeycomb sandwich structures are used in a wide variety of applications. Nevertheless, due to manufacturing defects or impact loads, these structures can be subject to imperfect bonding or debonding between the skin and the honeycomb core. The presence of debonding reduces the bending stiffness of the composite panel, which causes detectable changes in its vibration characteristics. This article presents a new supervised learning algorithm to identify debonded regions in aluminum honeycomb panels. The algorithm uses a linear approximation method handled by a statistical inference model based on the maximum-entropy principle. The merits of this new approach are twofold: training is avoided and data is processed in a period of time that is comparable to the one of neural networks. The honeycomb panels are modeled with finite elements using a simplified three-layer shell model. The adhesive layer between the skin and core is modeled using linear springs, the rigidities of which are reduced in debonded sectors. The algorithm is validated using experimental data of an aluminum honeycomb panel under different damage scenarios.
منابع مشابه
Numerical Investigation of Aluminum Honeycomb Filled High Strength Steel Crash Box for the Effect of Honeycomb Physical Parameters on Crashworthiness Constant
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel cra...
متن کاملNumerical Investigation of Aluminum Honey Comb Filled High Strength Steel Crash Box for the Effect of Honey Comb Physical Parameters on Crashworthiness Constant
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel cra...
متن کاملDesign and Investigation of Honeycomb End Plates for PEM Fuel Cells
In this article a new structure of PEM fuel cell end plate is presented. The new structure is known as a honeycomb sandwich panel. Several properties of the presented structure, such as mechanical and thermal behavior, as well as its advantages and disadvantages are introduced. The aim of this paper is to reduce the weight of the while maintaining a better compression force on the PEM fuel cell...
متن کاملOnline Guided Wave-Based Debonding Detection in Honeycomb Sandwich Structures
Because of the complex nature of structural characteristics, damage detection in honeycomb sandwich structures inherently carries many challenges. In the study, effects of debonding on leaky guided wave propagation in honeycomb sandwich structures are first studied by using the finite element method. A surface-bonded piezoelectric wafer actuator/sensor network is used for elastic-guided wave pr...
متن کاملExperimental Investigation and Numerical Simulation of the Mechanical Behavior of a Novel Honeycomb Core Sandwich Panels Formed by Hydroforming Process
Sandwich panel with central core honeycomb aluminum as one of the main shielding structures because of their high strength-to-weight ratio and improved energy absorption capacity, has been attracted the attention of many researchers and practitioners in recent years. This paper initiates and presents a new type of central core honeycomb formed by hydroforming process. The study is augmented by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014